High Speed Closed Brayton Cycle Turboalternator, Phase I

Completed Technology Project (2016 - 2016)

Project Introduction

A single shaft, low cost, long life, maintenance-free modular turbogenerator scalable from 1 to 100 kWe capacity range for human exploration of the moon and Mars is proposed. Operating at high spin speeds and based on a closed Brayton cycle using a binary He-Xe working fluid, the device combines five key enabling technologies to achieve high cycle and electrical efficiencies. MiTi's innovation is the seamless integration of 1) MiTi's Fifth Generation low power loss; high load, damping and temperature foil bearings with high reliability and long life; 2) a modular configuration that isolates the alternator elements from high temperature for improved thermal management; 3) a high efficiency direct drive permanent magnet high-speed alternator; 4) high adiabatic efficiency aero components; and 5) high effectiveness/low pressure drop ceramic/cermet based recuperator. The specific design has its heritage in an open Brayton cycle turboalternator with a demonstrated specific power 1.6 kW/kg.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Mohawk Innovative Technology, Inc.	Lead Organization	Industry	Albany, New York
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

High Speed Closed Brayton Cycle Turboalternator, Phase I

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

High Speed Closed Brayton Cycle Turboalternator, Phase I

Completed Technology Project (2016 - 2016)

Primary U.S. Work Locations	
New York	Ohio

Project Transitions

0

June 2016: Project Start

December 2016: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139738)

Images

Briefing Chart Image
High Speed Closed Brayton Cycle
Turboalternator, Phase I
(https://techport.nasa.gov/imag
e/129573)

Final Summary Chart Image
High Speed Closed Brayton Cycle
Turboalternator, Phase I Project
Image
(https://techport.nasa.gov/imag
e/129628)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Mohawk Innovative Technology, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Hooshang Heshmat

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

High Speed Closed Brayton Cycle Turboalternator, Phase I

Completed Technology Project (2016 - 2016)

Technology Areas

Primary:

- **Target Destinations**

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

